Ras signaling in the inner medullary cell response to urea and NaCl.

نویسندگان

  • W Tian
  • G R Boss
  • D M Cohen
چکیده

The small guanine nucleotide-binding protein Ras, activated by peptide mitogens and other stimuli, regulates downstream signaling events to influence transcription. The role of Ras in solute signaling to gene regulation was investigated in the murine inner medullary collecting duct (mIMCD3) cell line. Urea treatment (100-200 mM), but not sham treatment, increased Ras activation 124% at 2 min; the effect of NaCl did not achieve statistical significance. To determine the contribution of Ras activation to urea-inducible signal transduction, mIMCD3 cells were stably transfected with an expression plasmid encoding a dominant negative-acting N17Ras mutant driven by a dexamethasone-inducible (murine mammary tumor virus) promoter. After 24 h of induction, selected cell lines exhibited sufficient N17Ras overexpression to abolish epidermal growth factor- and hypotonicity-mediated signaling to extracellular signal-regulated kinase (ERK) phosphorylation, as determined by immunoblotting. Conditional N17Ras overexpression inhibited urea- and NaCl-inducible ERK phosphorylation by 40-50%, but only at 15 min, and not 5 min, of treatment. N17Ras induction, however, almost completely inhibited urea-inducible Egr-1 transcription, as quantitated by luciferase reporter gene assay, but failed to influence tonicity-inducible (TonE-mediated) transcription. N17Ras overexpression also blocked urea-inducible expression of the transcription factor Gadd153 but did not influence osmotic or urea-inducible apoptosis. In addition, urea treatment induced recruitment of the Ras activator Sos to the plasma membrane. Taken together, these observations suggest a role for Ras signaling in the IMCD cell response to urea stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combination of NaCl and urea enhances survival of IMCD cells to hyperosmolality.

Physiological adaptation to the hyperosmolar milieu of the renal medulla involves a complex series of signaling and gene expression events in which NaCl and urea activate different cellular processes. In the present study, we evaluated the effects of NaCl and urea, individually and in combination, on the viability of murine inner medullary collecting duct (mIMCD3) cells. Exposure to hyperosmola...

متن کامل

Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells.

The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much h...

متن کامل

Interstitial water and solute recovery by inner medullary vasa recta.

A recent model of volume and solute microvascular exchange in the renal medulla was extended by simulating the deposition of NaCl, urea, and water into the medullary interstitium from the loops of Henle and collecting ducts with generation rates that undergo spatial variation within the inner medullary interstitium. To build an exponential osmolality gradient in the inner medulla, as suggested ...

متن کامل

Urea may regulate urea transporter protein abundance during osmotic diuresis.

Rats with diabetes mellitus have an increase in UT-A1 urea transporter protein abundance and absolute urea excretion, but the relative amount (percentage) of urea in total urinary solute is actually decreased due to the marked glucosuria. Urea-specific signaling pathways have been identified in mIMCD3 cells and renal medulla, suggesting the possibility that changes in the percentage or concentr...

متن کامل

Urea and hypertonicity increase expression of heme oxygenase-1 in murine renal medullary cells.

Epithelial cells derived from the mammalian kidney medulla are responsive to urea at the levels of signal transduction and gene regulation. Hybridization of RNA harvested from control- and urea-treated murine inner medullary collecting duct (mIMCD3) cells with a cDNA expression array encoding stress-responsive genes suggested that heme oxygenase (HO)-1 mRNA was upregulated by urea. RNase protec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 278 2  شماره 

صفحات  -

تاریخ انتشار 2000